Further cleanup, solvers are now separate implementations of CrossSolver

This commit is contained in:
Joachim 2018-08-25 10:24:28 +02:00
parent 16dfcc33cd
commit af89c48970
9 changed files with 292 additions and 282 deletions

View File

@ -3,6 +3,30 @@ package be.nielandt
import java.time.Duration import java.time.Duration
import java.time.Instant import java.time.Instant
open abstract class CrossSolver {
/**
* Solve all crosses, look for a minimal set of moves for each color's cross.
*/
abstract fun solveCrosses(edgeModel: EdgeModel): Map<Int, List<Move>>
fun solveCrossesTimed(edgeModel: EdgeModel): Map<Int, List<Move>> {
val now = Instant.now()
val solveCrosses = solveCrosses(edgeModel)
val between = Duration.between(now, Instant.now())
println("Solving crosses took ${between.seconds}s")
return solveCrosses
}
companion object {
fun printResults(results: Map<Int, List<Move>>) {
println("results: ")
results.forEach { color, moveList ->
println("> color ${colorLetter(color)}, moves $moveList")
}
}
}
}
/** /**
* Let's look for symmetries. * Let's look for symmetries.
*/ */
@ -37,241 +61,26 @@ fun main(args: Array<String>) {
// } // }
// make a beginning model, then start doing crazy shit // do a fixed scramble for testing purposes
val fixedMoves = Move.parse("L L_ R R2")
println("fixedMoves = ${fixedMoves}")
// scramble random
val moves = Move.random(20) val moves = Move.random(20)
println("Scramble: $moves") println("Scramble: $moves")
val scrambledModel = EdgeModel(moves) val scrambledModel = EdgeModel(moves)
println(scrambledModel) println(scrambledModel)
// doAllCrossMoveCounts(scrambledModel) val baseSolve = CrossSolverBase().solveCrossesTimed(scrambledModel)
// val allCrossMoveCount = allCrossMoveCount(scrambledModel) CrossSolver.printResults(baseSolve)
// allCrossMoveCount.forEach { color, moves ->
// println("cross for color: ${color} in ${moves.size}: ${moves.joinToString(" ")}") val upgradedSolve = CrossSolverUpgraded().solveCrossesTimed(scrambledModel)
CrossSolver.printResults(upgradedSolve)
// val allCrossMoveCountUpgradedSkip = allCrossMoveCountUpgradedSkip(scrambledModel)
// allCrossMoveCountUpgradedSkip.forEach { color, moves ->
// println("skip upgrade cross for color: ${color} in ${moves.size}: ${moves.joinToString(" ")}")
// } // }
val allCrossMoveCountUpgraded = allCrossMoveCountUpgraded(scrambledModel)
allCrossMoveCountUpgraded.forEach { color, moves ->
println("upgrade cross for color: ${color} in ${moves.size}: ${moves.joinToString(" ")}")
}
val allCrossMoveCountUpgradedSkip = allCrossMoveCountUpgradedSkip(scrambledModel)
allCrossMoveCountUpgradedSkip.forEach { color, moves ->
println("skip upgrade cross for color: ${color} in ${moves.size}: ${moves.joinToString(" ")}")
}
} }
/**
* Do the color solves separately. Not very efficient, this rehashes a lot of things.
*/
fun doAllCrossMoveCounts(edgeModel: EdgeModel) {
for (c: Color in Color.values()) {
val crossMoveCount = crossMoveCount(edgeModel, c)
println("${c} in ${crossMoveCount?.size}: ${crossMoveCount?.joinToString()}")
}
}
/**
* For a single color, go 8 deep and try and find the minimal amount of moves to solve that cross.
*/
fun crossMoveCount(edgeModel: EdgeModel, color: Color): List<Move>? {
val moveCounts = Array<List<Move>?>(6) { null }
for (moveCount in 1..8) {
// build a counter of moveCount big
val counter = Counter(moveCount, Move.values().size)
// count up, each state of the counter corresponds to a combination of moves
do {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
// execute the moves
val afterMoves = edgeModel.doMoves(moves)
val crossSolved = afterMoves.crossSolved(color)
if (crossSolved) {
return@crossMoveCount moves
}
} while (counter.increase())
}
return null
}
/**
* Solve the minimal cross for all colors. Try to upgrade the method... Can we cache the 'previous results'?
*/
fun allCrossMoveCountUpgradedSkip(edgeModel: EdgeModel): Map<Color, List<Move>> {
val start = Instant.now()
val moveCounts = mutableMapOf<Color, List<Move>>()
for (moveCount in 1..8) {
println("all cross move count upgrade doing $moveCount")
// build a counter of moveCount big
val counter = Counter(moveCount, Move.values().size)
val edgeModelFactory = EdgeModelFactory(edgeModel, counter, true)
println("moveCounts = ${moveCounts}")
while (edgeModelFactory.hasNext()) {
// get the next model, using the internal counter which simply iterates over possible combinations of moves
val next = edgeModelFactory.getNext()
// check crosses that have not been found yet
Color.values().forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = next.crossSolved(color)
if (crossSolved) {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
moveCounts[color] = moves
}
}
}
// break if we have found hem all
if (moveCounts.keys.size == Color.values().size) {
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
// println("counter.skipInvalidCount = ${counter.skipInvalidCount}")
return moveCounts
}
}
}
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
return moveCounts
}
/**
* Solve the minimal cross for all colors. Try to upgrade the method... Can we cache the 'previous results'?
*/
fun allCrossMoveCountUpgraded(edgeModel: EdgeModel): Map<Color, List<Move>> {
val start = Instant.now()
val moveCounts = mutableMapOf<Color, List<Move>>()
for (moveCount in 1..8) {
println("all cross move count upgrade doing $moveCount")
// build a counter of moveCount big
val counter = Counter(moveCount, Move.values().size)
val edgeModelFactory = EdgeModelFactory(edgeModel, counter)
while (edgeModelFactory.hasNext()) {
// get the next model, using the internal counter which simply iterates over possible combinations of moves
val next = edgeModelFactory.getNext()
// check crosses that have not been found yet
Color.values().forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = next.crossSolved(color)
if (crossSolved) {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
moveCounts[color] = moves
}
}
}
// break if we have found hem all
if (moveCounts.keys.size == Color.values().size) {
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
return moveCounts
}
}
}
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
return moveCounts
}
/**
* This thing helps us to create edgemodels using a counter. The advantage is that the edgemodel doesn't need to be calculated
* completely from scratch: previous states are kept, so if, e.g., the third digit changes in the counter (of length 5),
* the previous state that was calculated using the first two states is used to perform move 3,4,5 on.
*
* This is probably equivalent to 8 nested for loops, you'd be able to keep track of temporary solutions there too....
*/
class EdgeModelFactory(val original: EdgeModel, val counter: Counter, val skip: Boolean = false) {
// keep a modified version of the edgemodel for each digit in the counter, from left to right
private val history: MutableList<EdgeModel> = mutableListOf()
// we always have one in the beginning: the initial state of the counter
private var hasNext: Boolean = true
init {
// init the history
this.history.add(original.doMove(Move.values()[counter.digit(0)]))
for (i in 1 until counter.size()) {
this.history.add(this.history.last().doMove(Move.values()[counter.digit(i)]))
}
}
fun hasNext(): Boolean {
return hasNext
}
fun getNext(): EdgeModel {
// the counter was increased, hooray
val lastOverflowIndex = counter.getLastModifiedIndex()
// we only need to redo everything starting from the lastoverflowindex
// these are our moves, but we can salvage everything up to lastoverflowindex
val moves = Move.combo(counter)
// we have a history to work with... only redo what's necessary
for (i in counter.getLastModifiedIndex() until counter.size()) {
var start: EdgeModel?
start = if (i == 0)
original
else
history[i - 1]
history[i] = start.doMove(Move.values()[counter.digit(i)])
}
// increase the counter for next time
if(!skip) {
if (!counter.increase()) {
this.hasNext = false
}
} else {
if (!counter.increaseAndSkipInvalid()) {
this.hasNext = false
}
}
// the last item in the history is now the edgemodel we need to test...
return history.last()
}
}
/**
* Solve the minimal cross for all colors.
*/
fun allCrossMoveCount(edgeModel: EdgeModel): Map<Color, List<Move>> {
val start = Instant.now()
val moveCounts = mutableMapOf<Color, List<Move>>()
for (moveCount in 1..8) {
// build a counter of moveCount big
println("allCrossMoveCount basic doing $moveCount")
val counter = Counter(moveCount, Move.values().size)
// count up, each state of the counter corresponds to a combination of moves
do {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
// execute the moves
val afterMoves = edgeModel.doMoves(moves)
// check crosses that have not been found yet
Color.values().forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = afterMoves.crossSolved(color)
if (crossSolved) {
moveCounts[color] = moves
}
}
}
if (moveCounts.keys.size == Color.values().size) {
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
return@allCrossMoveCount moveCounts
}
} while (counter.increase())
}
println("Execution time: ${Duration.between(start, Instant.now()).toMillis() / 1000}s")
return moveCounts
}
/**
* Convert the color into a single digit for print purposes.
*/
fun l(c: Color): String {
return c.name.first().toString()
}

View File

@ -0,0 +1,40 @@
package be.nielandt
class CrossSolverBase : CrossSolver() {
/**
* Solve the minimal cross for all colors.
*/
override fun solveCrosses(edgeModel: EdgeModel): Map<Int, List<Move>> {
val moveCounts = mutableMapOf<Int, List<Move>>()
for (moveCount in 1..8) {
// build a counter of moveCount big
println("allCrossMoveCount basic doing $moveCount")
val counter = Counter(moveCount, Move.values().size)
// count up, each state of the counter corresponds to a combination of moves
do {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
// execute the moves
val afterMoves = edgeModel.doMoves(moves)
// check crosses that have not been found yet
(0..5).forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = afterMoves.crossSolved(color)
if (crossSolved) {
moveCounts[color] = moves
}
}
}
if (moveCounts.keys.size == 6) {
return@solveCrosses moveCounts
}
} while (counter.increase())
}
return moveCounts
}
}

View File

@ -0,0 +1,43 @@
package be.nielandt
import java.time.Instant
/**
* This solver avoids redoing edgemodel manipulations. Should be equivalent to X nested for loops.
*/
class CrossSolverUpgraded : CrossSolver() {
override fun solveCrosses(edgeModel: EdgeModel): Map<Int, List<Move>> {
val start = Instant.now()
val moveCounts = mutableMapOf<Int, List<Move>>()
for (moveCount in 1..8) {
println("all cross move count upgrade doing $moveCount")
// build a counter of moveCount big
val counter = Counter(moveCount, Move.values().size)
val edgeModelFactory = EdgeModelFactory(edgeModel, counter)
while (edgeModelFactory.hasNext()) {
// get the next model, using the internal counter which simply iterates over possible combinations of moves
val next = edgeModelFactory.getNext()
// check crosses that have not been found yet
(0..5).forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = next.crossSolved(color)
if (crossSolved) {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
moveCounts[color] = moves
}
}
}
// break if we have found hem all
if (moveCounts.keys.size == 6) {
return moveCounts
}
}
}
return moveCounts
}
}

View File

@ -0,0 +1,45 @@
package be.nielandt
/**
* This solver avoids redoing edgemodel manipulations. Should be equivalent to X nested for loops.
*/
class CrossSolverUpgradedSkip : CrossSolver() {
override fun solveCrosses(edgeModel: EdgeModel): Map<Int, List<Move>> {
val moveCounts = mutableMapOf<Int, List<Move>>()
for (moveCount in 1..8) {
println("all cross move count upgrade doing $moveCount")
// build a counter of moveCount big
val counter = Counter(moveCount, Move.values().size)
// TODO skip the counter
val edgeModelFactory = EdgeModelFactory(edgeModel, counter)
println("moveCounts = ${moveCounts}")
while (edgeModelFactory.hasNext()) {
// get the next model, using the internal counter which simply iterates over possible combinations of moves
val next = edgeModelFactory.getNext()
// check crosses that have not been found yet
(0..5).forEach { color ->
if (!moveCounts.containsKey(color)) {
val crossSolved = next.crossSolved(color)
if (crossSolved) {
// what is the move combination we're looking at?
val moves = Move.combo(counter)
moveCounts[color] = moves
}
}
}
// break if we have found hem all
if (moveCounts.keys.size == 6) {
// println("counter.skipInvalidCount = ${counter.skipInvalidCount}")
return moveCounts
}
}
}
return moveCounts
}
}

View File

@ -26,7 +26,7 @@ package be.nielandt
class EdgeModel { class EdgeModel {
val model: Array<Color> val model: Array<Int>
private val F = intArrayOf(13, 18, 7, 20, 3, 0, 1, 2) private val F = intArrayOf(13, 18, 7, 20, 3, 0, 1, 2)
private val B = intArrayOf(8, 9, 10, 11, 16, 15, 22, 5) private val B = intArrayOf(8, 9, 10, 11, 16, 15, 22, 5)
@ -46,12 +46,12 @@ class EdgeModel {
} }
model = arrayOf( model = arrayOf(
Color.GREEN, Color.GREEN, Color.GREEN, Color.GREEN, GREEN, GREEN, GREEN, GREEN,
Color.RED, Color.RED, Color.RED, Color.RED, RED, RED, RED, RED,
Color.BLUE, Color.BLUE, Color.BLUE, Color.BLUE, BLUE, BLUE, BLUE, BLUE,
Color.ORANGE, Color.ORANGE, Color.ORANGE, Color.ORANGE, ORANGE, ORANGE, ORANGE, ORANGE,
Color.WHITE, Color.WHITE, Color.WHITE, Color.WHITE, WHITE, WHITE, WHITE, WHITE,
Color.YELLOW, Color.YELLOW, Color.YELLOW, Color.YELLOW YELLOW, YELLOW, YELLOW, YELLOW
) )
} }
@ -61,7 +61,7 @@ class EdgeModel {
this.model = doMoves.model this.model = doMoves.model
} }
constructor(model: Array<Color>) { constructor(model: Array<Int>) {
this.model = model this.model = model
} }
@ -154,17 +154,17 @@ class EdgeModel {
override fun toString(): String { override fun toString(): String {
val trimMargin = """ val trimMargin = """
| --------- | ---------
| | ${l(model[16])} | | | ${colorLetter(model[16])} |
| | ${l(model[19])} W ${l(model[17])} | | | ${colorLetter(model[19])} W ${colorLetter(model[17])} |
| | ${l(model[18])} | | | ${colorLetter(model[18])} |
|--------------------------------- |---------------------------------
|| ${l(model[12])} | ${l(model[0])} | ${l(model[4])} | ${l(model[8])} | || ${colorLetter(model[12])} | ${colorLetter(model[0])} | ${colorLetter(model[4])} | ${colorLetter(model[8])} |
|| ${l(model[15])} O ${l(model[13])} | ${l(model[3])} G ${l(model[1])} | ${l(model[7])} R ${l(model[5])} | ${l(model[11])} B ${l(model[9])} | || ${colorLetter(model[15])} O ${colorLetter(model[13])} | ${colorLetter(model[3])} G ${colorLetter(model[1])} | ${colorLetter(model[7])} R ${colorLetter(model[5])} | ${colorLetter(model[11])} B ${colorLetter(model[9])} |
|| ${l(model[14])} | ${l(model[2])} | ${l(model[6])} | ${l(model[10])} | || ${colorLetter(model[14])} | ${colorLetter(model[2])} | ${colorLetter(model[6])} | ${colorLetter(model[10])} |
|--------------------------------- |---------------------------------
| | ${l(model[20])} | | | ${colorLetter(model[20])} |
| | ${l(model[23])} Y ${l(model[21])} | | | ${colorLetter(model[23])} Y ${colorLetter(model[21])} |
| | ${l(model[22])} | | | ${colorLetter(model[22])} |
| --------- | ---------
""".trimMargin() """.trimMargin()
return trimMargin return trimMargin
@ -182,31 +182,34 @@ class EdgeModel {
return this.doMoves(f.toList()) return this.doMoves(f.toList())
} }
fun crossSolved(color: Color): Boolean { fun crossSolved(color: Int): Boolean {
return when (color) { return when (color) {
Color.WHITE -> { WHITE -> {
model[WB] == Color.WHITE && model[WG] == Color.WHITE && model[WO] == Color.WHITE && model[WR] == Color.WHITE && model[WB] == WHITE && model[WG] == WHITE && model[WO] == WHITE && model[WR] == WHITE &&
model[BW] == Color.BLUE && model[GW] == Color.GREEN && model[OW] == Color.ORANGE && model[RW] == Color.RED model[BW] == BLUE && model[GW] == GREEN && model[OW] == ORANGE && model[RW] == RED
} }
Color.YELLOW -> { YELLOW -> {
model[YB] == Color.YELLOW && model[YG] == Color.YELLOW && model[YO] == Color.YELLOW && model[YR] == Color.YELLOW && model[YB] == YELLOW && model[YG] == YELLOW && model[YO] == YELLOW && model[YR] == YELLOW &&
model[BY] == Color.BLUE && model[GY] == Color.GREEN && model[OY] == Color.ORANGE && model[RY] == Color.RED model[BY] == BLUE && model[GY] == GREEN && model[OY] == ORANGE && model[RY] == RED
} }
Color.RED -> { RED -> {
model[RW] == Color.RED && model[RG] == Color.RED && model[RY] == Color.RED && model[RB] == Color.RED && model[RW] == RED && model[RG] == RED && model[RY] == RED && model[RB] == RED &&
model[WR] == Color.WHITE && model[GR] == Color.GREEN && model[YR] == Color.YELLOW && model[BR] == Color.BLUE model[WR] == WHITE && model[GR] == GREEN && model[YR] == YELLOW && model[BR] == BLUE
} }
Color.BLUE -> { BLUE -> {
model[BW] == Color.BLUE && model[BR] == Color.BLUE && model[BY] == Color.BLUE && model[BO] == Color.BLUE && model[BW] == BLUE && model[BR] == BLUE && model[BY] == BLUE && model[BO] == BLUE &&
model[WB] == Color.WHITE && model[RB] == Color.RED && model[YB] == Color.YELLOW && model[OB] == Color.ORANGE model[WB] == WHITE && model[RB] == RED && model[YB] == YELLOW && model[OB] == ORANGE
} }
Color.GREEN -> { GREEN -> {
model[GW] == Color.GREEN && model[GO] == Color.GREEN && model[GY] == Color.GREEN && model[GR] == Color.GREEN && model[GW] == GREEN && model[GO] == GREEN && model[GY] == GREEN && model[GR] == GREEN &&
model[WG] == Color.WHITE && model[OG] == Color.ORANGE && model[YG] == Color.YELLOW && model[RG] == Color.RED model[WG] == WHITE && model[OG] == ORANGE && model[YG] == YELLOW && model[RG] == RED
} }
Color.ORANGE -> { ORANGE -> {
model[OW] == Color.ORANGE && model[OB] == Color.ORANGE && model[OY] == Color.ORANGE && model[OG] == Color.ORANGE && model[OW] == ORANGE && model[OB] == ORANGE && model[OY] == ORANGE && model[OG] == ORANGE &&
model[WO] == Color.WHITE && model[BO] == Color.BLUE && model[YO] == Color.YELLOW && model[GO] == Color.GREEN model[WO] == WHITE && model[BO] == BLUE && model[YO] == YELLOW && model[GO] == GREEN
}
else -> {
throw RuntimeException()
} }
} }
} }

View File

@ -37,8 +37,25 @@ const val OY = 14
/** /**
* Six colors * Six colors
*/ */
enum class Color(index: Int) { const val WHITE = 0
WHITE(0), YELLOW(1), ORANGE(2), RED(3), GREEN(4), BLUE(5) const val YELLOW = 1
const val ORANGE = 2
const val RED = 3
const val GREEN = 4
const val BLUE = 5
/**
* Convert the color into a single digit for print purposes.
*/
fun colorLetter(c: Int): String {
return when (c) {
WHITE -> "W"
YELLOW -> "Y"
RED -> "R"
BLUE -> "B"
GREEN -> "G"
ORANGE -> "O"
else -> "?"
}
} }

View File

@ -0,0 +1,50 @@
package be.nielandt
/**
* This thing helps us to create edgemodels using a counter. The advantage is that the edgemodel doesn't need to be calculated
* completely from scratch: previous states are kept, so if, e.g., the third digit changes in the counter (of length 5),
* the previous state that was calculated using the first two states is used to perform move 3,4,5 on.
*
* This is probably equivalent to 8 nested for loops, you'd be able to keep track of temporary solutions there too....
*/
class EdgeModelFactory(val original: EdgeModel, val counter: Counter) {
// keep a modified version of the edgemodel for each digit in the counter, from left to right
private val history: MutableList<EdgeModel> = mutableListOf()
// we always have one in the beginning: the initial state of the counter
private var hasNext: Boolean = true
init {
// init the history
this.history.add(original.doMove(Move.values()[counter.digit(0)]))
for (i in 1 until counter.size()) {
this.history.add(this.history.last().doMove(Move.values()[counter.digit(i)]))
}
}
fun hasNext(): Boolean {
return hasNext
}
fun getNext(): EdgeModel {
// the counter was increased, hooray
val lastOverflowIndex = counter.getLastModifiedIndex()
// we only need to redo everything starting from the lastoverflowindex
// these are our moves, but we can salvage everything up to lastoverflowindex
val moves = Move.combo(counter)
// we have a history to work with... only redo what's necessary
for (i in counter.getLastModifiedIndex() until counter.size()) {
var start: EdgeModel = if (i == 0)
original
else
history[i - 1]
history[i] = start.doMove(Move.values()[counter.digit(i)])
}
// increase the counter for next time
if (!counter.increase()) {
this.hasNext = false
}
// the last item in the history is now the edgemodel we need to test...
return history.last()
}
}

View File

@ -40,6 +40,19 @@ enum class Move {
} }
return res return res
} }
/**
* Parse a set of moves, separated by spaces, using the Move.enum names.
*/
fun parse(s: String): List<Move> {
val result = mutableListOf<Move>()
s.split(" ", ",", ";").forEach {
if (it.isNotEmpty()) {
result.add(Move.valueOf(it))
}
}
return result
}
} }
/** /**

View File

@ -1,6 +1,6 @@
package be.nielandt package be.nielandt
import org.junit.Assert.* import org.junit.Assert.assertEquals
import org.junit.Test import org.junit.Test
class EdgeModelTest { class EdgeModelTest {
@ -10,7 +10,7 @@ class EdgeModelTest {
// try each move // try each move
Move.values().forEach { move -> Move.values().forEach { move ->
val doMove = EdgeModel().doMove(move) val doMove = EdgeModel().doMove(move)
val count = Color.values().map { color -> val count = (0..5).map { color ->
val crossSolved = doMove.crossSolved(color) val crossSolved = doMove.crossSolved(color)
crossSolved crossSolved
}.count { it } }.count { it }
@ -18,14 +18,4 @@ class EdgeModelTest {
} }
} }
@Test
fun findAtLeastOneCombo() {
val white = Color.WHITE
val doMoves = EdgeModel().doMoves(Move.random(20))
val crossMoveCount = crossMoveCount(doMoves, Color.WHITE)
assertNotNull(crossMoveCount)
assertTrue(crossMoveCount!!.size<9)
println(doMoves)
println("crossMoveCount = $crossMoveCount")
}
} }