diff --git a/src/main/java/CalendarAstronomer.java b/src/main/java/CalendarAstronomer.java deleted file mode 100644 index a7fc29a..0000000 --- a/src/main/java/CalendarAstronomer.java +++ /dev/null @@ -1,1657 +0,0 @@ -import java.util.Date; -import java.util.TimeZone; - -/** - * CalendarAstronomer is a class that can perform the calculations to - * determine the positions of the sun and moon, the time of sunrise and - * sunset, and other astronomy-related data. The calculations it performs - * are in some cases quite complicated, and this utility class saves you - * the trouble of worrying about them. - *

- * The measurement of time is a very important part of astronomy. Because - * astronomical bodies are constantly in motion, observations are only valid - * at a given moment in time. Accordingly, each CalendarAstronomer - * object has a time property that determines the date - * and time for which its calculations are performed. You can set and - * retrieve this property with {@link #setDate setDate}, {@link #getDate getDate} - * and related methods. - *

- * Almost all of the calculations performed by this class, or by any - * astronomer, are approximations to various degrees of accuracy. The - * calculations in this class are mostly modelled after those described - * in the book - * - * Practical Astronomy With Your Calculator, by Peter J. - * Duffett-Smith, Cambridge University Press, 1990. This is an excellent - * book, and if you want a greater understanding of how these calculations - * are performed it a very good, readable starting point. - *

- * WARNING: This class is very early in its development, and - * it is highly likely that its API will change to some degree in the future. - * At the moment, it basically does just enough to support {@link com.ibm.icu.util.IslamicCalendar} - * and {@link com.ibm.icu.util.ChineseCalendar}. - * - * @author Laura Werner - * @author Alan Liu - * @internal - */ -public class CalendarAstronomer { - - //------------------------------------------------------------------------- - // Astronomical constants - //------------------------------------------------------------------------- - - /** - * The number of standard hours in one sidereal day. - * Approximately 24.93. - * @internal - */ - public static final double SIDEREAL_DAY = 23.93446960027; - - /** - * The number of sidereal hours in one mean solar day. - * Approximately 24.07. - * @internal - */ - public static final double SOLAR_DAY = 24.065709816; - - /** - * The average number of solar days from one new moon to the next. This is the time - * it takes for the moon to return the same ecliptic longitude as the sun. - * It is longer than the sidereal month because the sun's longitude increases - * during the year due to the revolution of the earth around the sun. - * Approximately 29.53. - * - * @see #SIDEREAL_MONTH - * @internal - */ - public static final double SYNODIC_MONTH = 29.530588853; - - /** - * The average number of days it takes - * for the moon to return to the same ecliptic longitude relative to the - * stellar background. This is referred to as the sidereal month. - * It is shorter than the synodic month due to - * the revolution of the earth around the sun. - * Approximately 27.32. - * - * @see #SYNODIC_MONTH - * @internal - */ - public static final double SIDEREAL_MONTH = 27.32166; - - /** - * The average number number of days between successive vernal equinoxes. - * Due to the precession of the earth's - * axis, this is not precisely the same as the sidereal year. - * Approximately 365.24 - * - * @see #SIDEREAL_YEAR - * @internal - */ - public static final double TROPICAL_YEAR = 365.242191; - - /** - * The average number of days it takes - * for the sun to return to the same position against the fixed stellar - * background. This is the duration of one orbit of the earth about the sun - * as it would appear to an outside observer. - * Due to the precession of the earth's - * axis, this is not precisely the same as the tropical year. - * Approximately 365.25. - * - * @see #TROPICAL_YEAR - * @internal - */ - public static final double SIDEREAL_YEAR = 365.25636; - - //------------------------------------------------------------------------- - // Time-related constants - //------------------------------------------------------------------------- - - /** - * The number of milliseconds in one second. - * @internal - */ - public static final int SECOND_MS = 1000; - - /** - * The number of milliseconds in one minute. - * @internal - */ - public static final int MINUTE_MS = 60*SECOND_MS; - - /** - * The number of milliseconds in one hour. - * @internal - */ - public static final int HOUR_MS = 60*MINUTE_MS; - - /** - * The number of milliseconds in one day. - * @internal - */ - public static final long DAY_MS = 24*HOUR_MS; - - /** - * The start of the julian day numbering scheme used by astronomers, which - * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds - * since 1/1/1970 AD (Gregorian), a negative number. - * Note that julian day numbers and - * the Julian calendar are not the same thing. Also note that - * julian days start at noon, not midnight. - * @internal - */ - public static final long JULIAN_EPOCH_MS = -210866760000000L; - -// static { -// Calendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT")); -// cal.clear(); -// cal.set(cal.ERA, 0); -// cal.set(cal.YEAR, 4713); -// cal.set(cal.MONTH, cal.JANUARY); -// cal.set(cal.DATE, 1); -// cal.set(cal.HOUR_OF_DAY, 12); -// System.out.println("1.5 Jan 4713 BC = " + cal.getTime().getTime()); - -// cal.clear(); -// cal.set(cal.YEAR, 2000); -// cal.set(cal.MONTH, cal.JANUARY); -// cal.set(cal.DATE, 1); -// cal.add(cal.DATE, -1); -// System.out.println("0.0 Jan 2000 = " + cal.getTime().getTime()); -// } - - /** - * Milliseconds value for 0.0 January 2000 AD. - */ - static final long EPOCH_2000_MS = 946598400000L; - - //------------------------------------------------------------------------- - // Assorted private data used for conversions - //------------------------------------------------------------------------- - - // My own copies of these so compilers are more likely to optimize them away - static private final double PI = 3.14159265358979323846; - static private final double PI2 = PI * 2.0; - - static private final double RAD_HOUR = 12 / PI; // radians -> hours - static private final double DEG_RAD = PI / 180; // degrees -> radians - static private final double RAD_DEG = 180 / PI; // radians -> degrees - - //------------------------------------------------------------------------- - // Constructors - //------------------------------------------------------------------------- - - /** - * Construct a new CalendarAstronomer object that is initialized to - * the current date and time. - * @internal - */ - public CalendarAstronomer() { - this(System.currentTimeMillis()); - } - - /** - * Construct a new CalendarAstronomer object that is initialized to - * the specified date and time. - * @internal - */ - public CalendarAstronomer(Date d) { - this(d.getTime()); - } - - /** - * Construct a new CalendarAstronomer object that is initialized to - * the specified time. The time is expressed as a number of milliseconds since - * January 1, 1970 AD (Gregorian). - * - * @see java.util.Date#getTime() - * @internal - */ - public CalendarAstronomer(long aTime) { - time = aTime; - } - - /** - * Construct a new CalendarAstronomer object with the given - * latitude and longitude. The object's time is set to the current - * date and time. - *

- * @param longitude The desired longitude, in degrees east of - * the Greenwich meridian. - * - * @param latitude The desired latitude, in degrees. Positive - * values signify North, negative South. - * - * @see java.util.Date#getTime() - * @internal - */ - public CalendarAstronomer(double longitude, double latitude) { - this(); - fLongitude = normPI(longitude * DEG_RAD); - fLatitude = normPI(latitude * DEG_RAD); - fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2); - } - - - //------------------------------------------------------------------------- - // Time and date getters and setters - //------------------------------------------------------------------------- - - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param aTime the date and time, expressed as the number of milliseconds since - * 1/1/1970 0:00 GMT (Gregorian). - * - * @see #setDate - * @see #getTime - * @internal - */ - public void setTime(long aTime) { - time = aTime; - clearCache(); - } - - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param date the time and date, expressed as a Date object. - * - * @see #setTime - * @see #getDate - * @internal - */ - public void setDate(Date date) { - setTime(date.getTime()); - } - - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param jdn the desired time, expressed as a "julian day number", - * which is the number of elapsed days since - * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day - * numbers start at noon. To get the jdn for - * the corresponding midnight, subtract 0.5. - * - * @see #getJulianDay - * @see #JULIAN_EPOCH_MS - * @internal - */ - public void setJulianDay(double jdn) { - time = (long)(jdn * DAY_MS) + JULIAN_EPOCH_MS; - clearCache(); - julianDay = jdn; - } - - /** - * Get the current time of this CalendarAstronomer object, - * represented as the number of milliseconds since - * 1/1/1970 AD 0:00 GMT (Gregorian). - * - * @see #setTime - * @see #getDate - * @internal - */ - public long getTime() { - return time; - } - - /** - * Get the current time of this CalendarAstronomer object, - * represented as a Date object. - * - * @see #setDate - * @see #getTime - * @internal - */ - public Date getDate() { - return new Date(time); - } - - /** - * Get the current time of this CalendarAstronomer object, - * expressed as a "julian day number", which is the number of elapsed - * days since 1/1/4713 BC (Julian), 12:00 GMT. - * - * @see #setJulianDay - * @see #JULIAN_EPOCH_MS - * @internal - */ - public double getJulianDay() { - if (julianDay == INVALID) { - julianDay = (double)(time - JULIAN_EPOCH_MS) / (double)DAY_MS; - } - return julianDay; - } - - /** - * Return this object's time expressed in julian centuries: - * the number of centuries after 1/1/1900 AD, 12:00 GMT - * - * @see #getJulianDay - * @internal - */ - public double getJulianCentury() { - if (julianCentury == INVALID) { - julianCentury = (getJulianDay() - 2415020.0) / 36525; - } - return julianCentury; - } - - /** - * Returns the current Greenwich sidereal time, measured in hours - * @internal - */ - public double getGreenwichSidereal() { - if (siderealTime == INVALID) { - // See page 86 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - double UT = normalize((double)time/HOUR_MS, 24); - - siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24); - } - return siderealTime; - } - - private double getSiderealOffset() { - if (siderealT0 == INVALID) { - double JD = Math.floor(getJulianDay() - 0.5) + 0.5; - double S = JD - 2451545.0; - double T = S / 36525.0; - siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); - } - return siderealT0; - } - - /** - * Returns the current local sidereal time, measured in hours - * @internal - */ - public double getLocalSidereal() { - return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24); - } - - /** - * Converts local sidereal time to Universal Time. - * - * @param lst The Local Sidereal Time, in hours since sidereal midnight - * on this object's current date. - * - * @return The corresponding Universal Time, in milliseconds since - * 1 Jan 1970, GMT. - */ - private long lstToUT(double lst) { - // Convert to local mean time - double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); - - // Then find local midnight on this day - long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset; - - //out(" lt =" + lt + " hours"); - //out(" base=" + new Date(base)); - - return base + (long)(lt * HOUR_MS); - } - - - //------------------------------------------------------------------------- - // Coordinate transformations, all based on the current time of this object - //------------------------------------------------------------------------- - - /** - * Convert from ecliptic to equatorial coordinates. - * - * @param ecliptic A point in the sky in ecliptic coordinates. - * @return The corresponding point in equatorial coordinates. - * @internal - */ - public final Equatorial eclipticToEquatorial(Ecliptic ecliptic) - { - return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude); - } - - /** - * Convert from ecliptic to equatorial coordinates. - * - * @param eclipLong The ecliptic longitude - * @param eclipLat The ecliptic latitude - * - * @return The corresponding point in equatorial coordinates. - * @internal - */ - public final Equatorial eclipticToEquatorial(double eclipLong, double eclipLat) - { - // See page 42 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - double obliq = eclipticObliquity(); - double sinE = Math.sin(obliq); - double cosE = Math.cos(obliq); - - double sinL = Math.sin(eclipLong); - double cosL = Math.cos(eclipLong); - - double sinB = Math.sin(eclipLat); - double cosB = Math.cos(eclipLat); - double tanB = Math.tan(eclipLat); - - return new Equatorial(Math.atan2(sinL*cosE - tanB*sinE, cosL), - Math.asin(sinB*cosE + cosB*sinE*sinL) ); - } - - /** - * Convert from ecliptic longitude to equatorial coordinates. - * - * @param eclipLong The ecliptic longitude - * - * @return The corresponding point in equatorial coordinates. - * @internal - */ - public final Equatorial eclipticToEquatorial(double eclipLong) - { - return eclipticToEquatorial(eclipLong, 0); // TODO: optimize - } - - /** - * @internal - */ - public Horizon eclipticToHorizon(double eclipLong) - { - Equatorial equatorial = eclipticToEquatorial(eclipLong); - - double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle - - double sinH = Math.sin(H); - double cosH = Math.cos(H); - double sinD = Math.sin(equatorial.declination); - double cosD = Math.cos(equatorial.declination); - double sinL = Math.sin(fLatitude); - double cosL = Math.cos(fLatitude); - - double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH); - double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude)); - - return new Horizon(azimuth, altitude); - } - - - //------------------------------------------------------------------------- - // The Sun - //------------------------------------------------------------------------- - - // - // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 - // Angles are in radians (after multiplying by PI/180) - // - static final double JD_EPOCH = 2447891.5; // Julian day of epoch - - static final double SUN_ETA_G = 279.403303 * PI/180; // Ecliptic longitude at epoch - static final double SUN_OMEGA_G = 282.768422 * PI/180; // Ecliptic longitude of perigee - static final double SUN_E = 0.016713; // Eccentricity of orbit - //double sunR0 = 1.495585e8; // Semi-major axis in KM - //double sunTheta0 = 0.533128 * PI/180; // Angular diameter at R0 - - // The following three methods, which compute the sun parameters - // given above for an arbitrary epoch (whatever time the object is - // set to), make only a small difference as compared to using the - // above constants. E.g., Sunset times might differ by ~12 - // seconds. Furthermore, the eta-g computation is befuddled by - // Duffet-Smith's incorrect coefficients (p.86). I've corrected - // the first-order coefficient but the others may be off too - no - // way of knowing without consulting another source. - -// /** -// * Return the sun's ecliptic longitude at perigee for the current time. -// * See Duffett-Smith, p. 86. -// * @return radians -// */ -// private double getSunOmegaG() { -// double T = getJulianCentury(); -// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; -// } - -// /** -// * Return the sun's ecliptic longitude for the current time. -// * See Duffett-Smith, p. 86. -// * @return radians -// */ -// private double getSunEtaG() { -// double T = getJulianCentury(); -// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; -// // -// // The above line is from Duffett-Smith, and yields manifestly wrong -// // results. The below constant is derived empirically to match the -// // constant he gives for the 1990 EPOCH. -// // -// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; -// } - -// /** -// * Return the sun's eccentricity of orbit for the current time. -// * See Duffett-Smith, p. 86. -// * @return double -// */ -// private double getSunE() { -// double T = getJulianCentury(); -// return 0.01675104 - (0.0000418 + 0.000000126*T)*T; -// } - - /** - * The longitude of the sun at the time specified by this object. - * The longitude is measured in radians along the ecliptic - * from the "first point of Aries," the point at which the ecliptic - * crosses the earth's equatorial plane at the vernal equinox. - *

- * Currently, this method uses an approximation of the two-body Kepler's - * equation for the earth and the sun. It does not take into account the - * perturbations caused by the other planets, the moon, etc. - * @internal - */ - public double getSunLongitude() - { - // See page 86 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - if (sunLongitude == INVALID) { - double[] result = getSunLongitude(getJulianDay()); - sunLongitude = result[0]; - meanAnomalySun = result[1]; - } - return sunLongitude; - } - - /** - * TODO Make this public when the entire class is package-private. - */ - /*public*/ double[] getSunLongitude(double julian) - { - // See page 86 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - double day = julian - JD_EPOCH; // Days since epoch - - // Find the angular distance the sun in a fictitious - // circular orbit has travelled since the epoch. - double epochAngle = norm2PI(PI2/TROPICAL_YEAR*day); - - // The epoch wasn't at the sun's perigee; find the angular distance - // since perigee, which is called the "mean anomaly" - double meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); - - // Now find the "true anomaly", e.g. the real solar longitude - // by solving Kepler's equation for an elliptical orbit - // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different - // equations; omega_g is to be correct. - return new double[] { - norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G), - meanAnomaly - }; - } - - /** - * The position of the sun at this object's current date and time, - * in equatorial coordinates. - * @internal - */ - public Equatorial getSunPosition() { - return eclipticToEquatorial(getSunLongitude(), 0); - } - - private static class SolarLongitude { - double value; - SolarLongitude(double val) { value = val; } - } - - /** - * Constant representing the vernal equinox. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "vernal" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0); - - /** - * Constant representing the summer solstice. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "summer" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2); - - /** - * Constant representing the autumnal equinox. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "autumn" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI); - - /** - * Constant representing the winter solstice. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "winter" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude WINTER_SOLSTICE = new SolarLongitude((PI*3)/2); - - /** - * Find the next time at which the sun's ecliptic longitude will have - * the desired value. - * @internal - */ - public long getSunTime(double desired, boolean next) - { - return timeOfAngle( new AngleFunc() { public double eval() { return getSunLongitude(); } }, - desired, - TROPICAL_YEAR, - MINUTE_MS, - next); - } - - /** - * Find the next time at which the sun's ecliptic longitude will have - * the desired value. - * @internal - */ - public long getSunTime(SolarLongitude desired, boolean next) { - return getSunTime(desired.value, next); - } - - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * - * NOTE: This method only works well if this object is set to a - * time near local noon. Because of variations between the local - * official time zone and the geographic longitude, the - * computation can flop over into an adjacent day if this object - * is set to a time near local midnight. - * - * @internal - */ - public long getSunRiseSet(boolean rise) - { - long t0 = time; - - // Make a rough guess: 6am or 6pm local time on the current day - long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS; - - setTime(noon + (rise ? -6L : 6L) * HOUR_MS); - - long t = riseOrSet(new CoordFunc() { - public Equatorial eval() { return getSunPosition(); } - }, - rise, - .533 * DEG_RAD, // Angular Diameter - 34 /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS / 12); // Desired accuracy - - setTime(t0); - return t; - } - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See Duffett-Smith p.93 -// //------------------------------------------------------------------------- -// -// // This yields worse results (as compared to USNO data) than getSunRiseSet(). -// /** -// * TODO Make this public when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet2(boolean rise) { -// // 1. Calculate coordinates of the sun's center for midnight -// double jd = Math.floor(getJulianDay() - 0.5) + 0.5; -// double[] sl = getSunLongitude(jd); -// double lambda1 = sl[0]; -// Equatorial pos1 = eclipticToEquatorial(lambda1, 0); -// -// // 2. Add ... to lambda to get position 24 hours later -// double lambda2 = lambda1 + 0.985647*DEG_RAD; -// Equatorial pos2 = eclipticToEquatorial(lambda2, 0); -// -// // 3. Calculate LSTs of rising and setting for these two positions -// double tanL = Math.tan(fLatitude); -// double H = Math.acos(-tanL * Math.tan(pos1.declination)); -// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2; -// double lst1s = (pos1.ascension + H) * 24 / PI2; -// H = Math.acos(-tanL * Math.tan(pos2.declination)); -// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2; -// double lst2s = (H + pos2.ascension ) * 24 / PI2; -// if (lst1r > 24) lst1r -= 24; -// if (lst1s > 24) lst1s -= 24; -// if (lst2r > 24) lst2r -= 24; -// if (lst2s > 24) lst2s -= 24; -// -// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. -// double gst1r = lstToGst(lst1r); -// double gst1s = lstToGst(lst1s); -// double gst2r = lstToGst(lst2r); -// double gst2s = lstToGst(lst2s); -// if (gst1r > gst2r) gst2r += 24; -// if (gst1s > gst2s) gst2s += 24; -// -// // 5. Calculate GST at 0h UT of this date -// double t00 = utToGst(0); -// -// // 6. Calculate GST at 0h on the observer's longitude -// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. -// double t00p = t00 - offset*1.002737909; -// if (t00p < 0) t00p += 24; // do NOT normalize -// -// // 7. Adjust -// if (gst1r < t00p) { -// gst1r += 24; -// gst2r += 24; -// } -// if (gst1s < t00p) { -// gst1s += 24; -// gst2s += 24; -// } -// -// // 8. -// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); -// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); -// -// // 9. Correct for parallax, refraction, and sun's diameter -// double dec = (pos1.declination + pos2.declination) / 2; -// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec)); -// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter -// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG; -// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours -// -// // 10. Add correction to GSTs, subtract from GSTr -// gstr -= delta_t; -// gsts += delta_t; -// -// // 11. Convert GST to UT and then to local civil time -// double ut = gstToUt(rise ? gstr : gsts); -// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); -// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day -// return midnight + (long) (ut * 3600000); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert local sidereal time to Greenwich sidereal time. -// * Section 15. Duffett-Smith p.21 -// * @param lst in hours (0..24) -// * @return GST in hours (0..24) -// */ -// double lstToGst(double lst) { -// double delta = fLongitude * 24 / PI2; -// return normalize(lst - delta, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert UT to GST on this date. -// * Section 12. Duffett-Smith p.17 -// * @param ut in hours -// * @return GST in hours -// */ -// double utToGst(double ut) { -// return normalize(getT0() + ut*1.002737909, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert GST to UT on this date. -// * Section 13. Duffett-Smith p.18 -// * @param gst in hours -// * @return UT in hours -// */ -// double gstToUt(double gst) { -// return normalize(gst - getT0(), 24) * 0.9972695663; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// double getT0() { -// // Common computation for UT <=> GST -// -// // Find JD for 0h UT -// double jd = Math.floor(getJulianDay() - 0.5) + 0.5; -// -// double s = jd - 2451545.0; -// double t = s / 36525.0; -// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; -// return t0; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See sci.astro FAQ -// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html -// //------------------------------------------------------------------------- -// -// // Note: This method appears to produce inferior accuracy as -// // compared to getSunRiseSet(). -// -// /** -// * TODO Make this public when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet3(boolean rise) { -// -// // Compute day number for 0.0 Jan 2000 epoch -// double d = (double)(time - EPOCH_2000_MS) / DAY_MS; -// -// // Now compute the Local Sidereal Time, LST: -// // -// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ -// fLongitude*RAD_DEG; -// // -// // (east long. positive). Note that LST is here expressed in degrees, -// // where 15 degrees corresponds to one hour. Since LST really is an angle, -// // it's convenient to use one unit---degrees---throughout. -// -// // COMPUTING THE SUN'S POSITION -// // ---------------------------- -// // -// // To be able to compute the Sun's rise/set times, you need to be able to -// // compute the Sun's position at any time. First compute the "day -// // number" d as outlined above, for the desired moment. Next compute: -// // -// double oblecl = 23.4393 - 3.563E-7 * d; -// // -// double w = 282.9404 + 4.70935E-5 * d; -// double M = 356.0470 + 0.9856002585 * d; -// double e = 0.016709 - 1.151E-9 * d; -// // -// // This is the obliquity of the ecliptic, plus some of the elements of -// // the Sun's apparent orbit (i.e., really the Earth's orbit): w = -// // argument of perihelion, M = mean anomaly, e = eccentricity. -// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly -// // true, this is still an accurate approximation). Next compute E, the -// // eccentric anomaly: -// // -// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) ); -// // -// // where E and M are in degrees. This is it---no further iterations are -// // needed because we know e has a sufficiently small value. Next compute -// // the true anomaly, v, and the distance, r: -// // -// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e; -// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD); -// // -// // and -// // -// // r = sqrt( A*A + B*B ) -// double v = Math.atan2( B, A )*RAD_DEG; -// // -// // The Sun's true longitude, slon, can now be computed: -// // -// double slon = v + w; -// // -// // Since the Sun is always at the ecliptic (or at least very very close to -// // it), we can use simplified formulae to convert slon (the Sun's ecliptic -// // longitude) to sRA and sDec (the Sun's RA and Dec): -// // -// // sin(slon) * cos(oblecl) -// // tan(sRA) = ------------------------- -// // cos(slon) -// // -// // sin(sDec) = sin(oblecl) * sin(slon) -// // -// // As was the case when computing az, the Azimuth, if possible use an -// // atan2() function to compute sRA. -// -// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG; -// -// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD); -// double sDec = Math.asin(sin_sDec)*RAD_DEG; -// -// // COMPUTING RISE AND SET TIMES -// // ---------------------------- -// // -// // To compute when an object rises or sets, you must compute when it -// // passes the meridian and the HA of rise/set. Then the rise time is -// // the meridian time minus HA for rise/set, and the set time is the -// // meridian time plus the HA for rise/set. -// // -// // To find the meridian time, compute the Local Sidereal Time at 0h local -// // time (or 0h UT if you prefer to work in UT) as outlined above---name -// // that quantity LST0. The Meridian Time, MT, will now be: -// // -// // MT = RA - LST0 -// double MT = normalize(sRA - LST, 360); -// // -// // where "RA" is the object's Right Ascension (in degrees!). If negative, -// // add 360 deg to MT. If the object is the Sun, leave the time as it is, -// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from -// // sidereal to solar time. Now, compute HA for rise/set, name that -// // quantity HA0: -// // -// // sin(h0) - sin(lat) * sin(Dec) -// // cos(HA0) = --------------------------------- -// // cos(lat) * cos(Dec) -// // -// // where h0 is the altitude selected to represent rise/set. For a purely -// // mathematical horizon, set h0 = 0 and simplify to: -// // -// // cos(HA0) = - tan(lat) * tan(Dec) -// // -// // If you want to account for refraction on the atmosphere, set h0 = -35/60 -// // degrees (-35 arc minutes), and if you want to compute the rise/set times -// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). -// // -// double h0 = -50/60 * DEG_RAD; -// -// double HA0 = Math.acos( -// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) / -// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG; -// -// // When HA0 has been computed, leave it as it is for the Sun but multiply -// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to -// // solar time. Finally compute: -// // -// // Rise time = MT - HA0 -// // Set time = MT + HA0 -// // -// // convert the times from degrees to hours by dividing by 15. -// // -// // If you'd like to check that your calculations are accurate or just -// // need a quick result, check the USNO's Sun or Moon Rise/Set Table, -// // . -// -// double result = MT + (rise ? -HA0 : HA0); // in degrees -// -// // Find UT midnight on this day -// long midnight = DAY_MS * (time / DAY_MS); -// -// return midnight + (long) (result * 3600000 / 15); -// } - - //------------------------------------------------------------------------- - // The Moon - //------------------------------------------------------------------------- - - static final double moonL0 = 318.351648 * PI/180; // Mean long. at epoch - static final double moonP0 = 36.340410 * PI/180; // Mean long. of perigee - static final double moonN0 = 318.510107 * PI/180; // Mean long. of node - static final double moonI = 5.145366 * PI/180; // Inclination of orbit - static final double moonE = 0.054900; // Eccentricity of orbit - - // These aren't used right now - static final double moonA = 3.84401e5; // semi-major axis (km) - static final double moonT0 = 0.5181 * PI/180; // Angular size at distance A - static final double moonPi = 0.9507 * PI/180; // Parallax at distance A - - /** - * The position of the moon at the time set on this - * object, in equatorial coordinates. - * @internal - */ - public Equatorial getMoonPosition() - { - // - // See page 142 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - // - if (moonPosition == null) { - // Calculate the solar longitude. Has the side effect of - // filling in "meanAnomalySun" as well. - double sunLong = getSunLongitude(); - - // - // Find the # of days since the epoch of our orbital parameters. - // TODO: Convert the time of day portion into ephemeris time - // - double day = getJulianDay() - JD_EPOCH; // Days since epoch - - // Calculate the mean longitude and anomaly of the moon, based on - // a circular orbit. Similar to the corresponding solar calculation. - double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); - double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); - - // - // Calculate the following corrections: - // Evection: the sun's gravity affects the moon's eccentricity - // Annual Eqn: variation in the effect due to earth-sun distance - // A3: correction factor (for ???) - // - double evection = 1.2739*PI/180 * Math.sin(2 * (meanLongitude - sunLong) - - meanAnomalyMoon); - double annual = 0.1858*PI/180 * Math.sin(meanAnomalySun); - double a3 = 0.3700*PI/180 * Math.sin(meanAnomalySun); - - meanAnomalyMoon += evection - annual - a3; - - // - // More correction factors: - // center equation of the center correction - // a4 yet another error correction (???) - // - // TODO: Skip the equation of the center correction and solve Kepler's eqn? - // - double center = 6.2886*PI/180 * Math.sin(meanAnomalyMoon); - double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon); - - // Now find the moon's corrected longitude - moonLongitude = meanLongitude + evection + center - annual + a4; - - // - // And finally, find the variation, caused by the fact that the sun's - // gravitational pull on the moon varies depending on which side of - // the earth the moon is on - // - double variation = 0.6583*PI/180 * Math.sin(2*(moonLongitude - sunLong)); - - moonLongitude += variation; - - // - // What we've calculated so far is the moon's longitude in the plane - // of its own orbit. Now map to the ecliptic to get the latitude - // and longitude. First we need to find the longitude of the ascending - // node, the position on the ecliptic where it is crossed by the moon's - // orbit as it crosses from the southern to the northern hemisphere. - // - double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); - - nodeLongitude -= 0.16*PI/180 * Math.sin(meanAnomalySun); - - double y = Math.sin(moonLongitude - nodeLongitude); - double x = Math.cos(moonLongitude - nodeLongitude); - - moonEclipLong = Math.atan2(y*Math.cos(moonI), x) + nodeLongitude; - double moonEclipLat = Math.asin(y * Math.sin(moonI)); - - moonPosition = eclipticToEquatorial(moonEclipLong, moonEclipLat); - } - return moonPosition; - } - - /** - * The "age" of the moon at the time specified in this object. - * This is really the angle between the - * current ecliptic longitudes of the sun and the moon, - * measured in radians. - * - * @see #getMoonPhase - * @internal - */ - public double getMoonAge() { - // See page 147 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - // - // Force the moon's position to be calculated. We're going to use - // some the intermediate results cached during that calculation. - // - getMoonPosition(); - - return norm2PI(moonEclipLong - sunLongitude); - } - - /** - * Calculate the phase of the moon at the time set in this object. - * The returned phase is a double in the range - * 0 <= phase < 1, interpreted as follows: - *

- * - * @see #getMoonAge - * @internal - */ - public double getMoonPhase() { - // See page 147 of "Practial Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - return 0.5 * (1 - Math.cos(getMoonAge())); - } - - private static class MoonAge { - double value; - MoonAge(double val) { value = val; } - } - - /** - * Constant representing a new moon. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge NEW_MOON = new MoonAge(0); - - /** - * Constant representing the moon's first quarter. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2); - - /** - * Constant representing a full moon. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge FULL_MOON = new MoonAge(PI); - - /** - * Constant representing the moon's last quarter. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2); - - /** - * Find the next or previous time at which the Moon's ecliptic - * longitude will have the desired value. - *

- * @param desired The desired longitude. - * @param next true if the next occurrance of the phase - * is desired, false for the previous occurrance. - * @internal - */ - public long getMoonTime(double desired, boolean next) - { - return timeOfAngle( new AngleFunc() { - public double eval() { return getMoonAge(); } }, - desired, - SYNODIC_MONTH, - MINUTE_MS, - next); - } - - /** - * Find the next or previous time at which the moon will be in the - * desired phase. - *

- * @param desired The desired phase of the moon. - * @param next true if the next occurrance of the phase - * is desired, false for the previous occurrance. - * @internal - */ - public long getMoonTime(MoonAge desired, boolean next) { - return getMoonTime(desired.value, next); - } - - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * @internal - */ - public long getMoonRiseSet(boolean rise) - { - return riseOrSet(new CoordFunc() { - public Equatorial eval() { return getMoonPosition(); } - }, - rise, - .533 * DEG_RAD, // Angular Diameter - 34 /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS); // Desired accuracy - } - - //------------------------------------------------------------------------- - // Interpolation methods for finding the time at which a given event occurs - //------------------------------------------------------------------------- - - private interface AngleFunc { - public double eval(); - } - - private long timeOfAngle(AngleFunc func, double desired, - double periodDays, long epsilon, boolean next) - { - // Find the value of the function at the current time - double lastAngle = func.eval(); - - // Find out how far we are from the desired angle - double deltaAngle = norm2PI(desired - lastAngle) ; - - // Using the average period, estimate the next (or previous) time at - // which the desired angle occurs. - double deltaT = (deltaAngle + (next ? 0 : -PI2)) * (periodDays*DAY_MS) / PI2; - - double lastDeltaT = deltaT; // Liu - long startTime = time; // Liu - - setTime(time + (long)deltaT); - - // Now iterate until we get the error below epsilon. Throughout - // this loop we use normPI to get values in the range -Pi to Pi, - // since we're using them as correction factors rather than absolute angles. - do { - // Evaluate the function at the time we've estimated - double angle = func.eval(); - - // Find the # of milliseconds per radian at this point on the curve - double factor = Math.abs(deltaT / normPI(angle-lastAngle)); - - // Correct the time estimate based on how far off the angle is - deltaT = normPI(desired - angle) * factor; - - // HACK: - // - // If abs(deltaT) begins to diverge we need to quit this loop. - // This only appears to happen when attempting to locate, for - // example, a new moon on the day of the new moon. E.g.: - // - // This result is correct: - // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= - // Sun Jul 22 10:57:41 CST 1990 - // - // But attempting to make the same call a day earlier causes deltaT - // to diverge: - // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> - // 1.3649828540224032E9 - // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= - // Sun Jul 08 13:56:15 CST 1990 - // - // As a temporary solution, we catch this specific condition and - // adjust our start time by one eighth period days (either forward - // or backward) and try again. - // Liu 11/9/00 - if (Math.abs(deltaT) > Math.abs(lastDeltaT)) { - long delta = (long) (periodDays * DAY_MS / 8); - setTime(startTime + (next ? delta : -delta)); - return timeOfAngle(func, desired, periodDays, epsilon, next); - } - - lastDeltaT = deltaT; - lastAngle = angle; - - setTime(time + (long)deltaT); - } - while (Math.abs(deltaT) > epsilon); - - return time; - } - - private interface CoordFunc { - public Equatorial eval(); - } - - private long riseOrSet(CoordFunc func, boolean rise, - double diameter, double refraction, - long epsilon) - { - Equatorial pos = null; - double tanL = Math.tan(fLatitude); - long deltaT = Long.MAX_VALUE; - int count = 0; - - // - // Calculate the object's position at the current time, then use that - // position to calculate the time of rising or setting. The position - // will be different at that time, so iterate until the error is allowable. - // - do { - // See "Practical Astronomy With Your Calculator, section 33. - pos = func.eval(); - double angle = Math.acos(-tanL * Math.tan(pos.declination)); - double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2; - - // Convert from LST to Universal Time. - long newTime = lstToUT( lst ); - - deltaT = newTime - time; - setTime(newTime); - } - while (++ count < 5 && Math.abs(deltaT) > epsilon); - - // Calculate the correction due to refraction and the object's angular diameter - double cosD = Math.cos(pos.declination); - double psi = Math.acos(Math.sin(fLatitude) / cosD); - double x = diameter / 2 + refraction; - double y = Math.asin(Math.sin(x) / Math.sin(psi)); - long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); - - return time + (rise ? -delta : delta); - } - - //------------------------------------------------------------------------- - // Other utility methods - //------------------------------------------------------------------------- - - /*** - * Given 'value', add or subtract 'range' until 0 <= 'value' < range. - * The modulus operator. - */ - private static final double normalize(double value, double range) { - return value - range * Math.floor(value / range); - } - - /** - * Normalize an angle so that it's in the range 0 - 2pi. - * For positive angles this is just (angle % 2pi), but the Java - * mod operator doesn't work that way for negative numbers.... - */ - private static final double norm2PI(double angle) { - return normalize(angle, PI2); - } - - /** - * Normalize an angle into the range -PI - PI - */ - private static final double normPI(double angle) { - return normalize(angle + PI, PI2) - PI; - } - - /** - * Find the "true anomaly" (longitude) of an object from - * its mean anomaly and the eccentricity of its orbit. This uses - * an iterative solution to Kepler's equation. - * - * @param meanAnomaly The object's longitude calculated as if it were in - * a regular, circular orbit, measured in radians - * from the point of perigee. - * - * @param eccentricity The eccentricity of the orbit - * - * @return The true anomaly (longitude) measured in radians - */ - private double trueAnomaly(double meanAnomaly, double eccentricity) - { - // First, solve Kepler's equation iteratively - // Duffett-Smith, p.90 - double delta; - double E = meanAnomaly; - do { - delta = E - eccentricity * Math.sin(E) - meanAnomaly; - E = E - delta / (1 - eccentricity * Math.cos(E)); - } - while (Math.abs(delta) > 1e-5); // epsilon = 1e-5 rad - - return 2.0 * Math.atan( Math.tan(E/2) * Math.sqrt( (1+eccentricity) - /(1-eccentricity) ) ); - } - - /** - * Return the obliquity of the ecliptic (the angle between the ecliptic - * and the earth's equator) at the current time. This varies due to - * the precession of the earth's axis. - * - * @return the obliquity of the ecliptic relative to the equator, - * measured in radians. - */ - private double eclipticObliquity() { - if (eclipObliquity == INVALID) { - final double epoch = 2451545.0; // 2000 AD, January 1.5 - - double T = (getJulianDay() - epoch) / 36525; - - eclipObliquity = 23.439292 - - 46.815/3600 * T - - 0.0006/3600 * T*T - + 0.00181/3600 * T*T*T; - - eclipObliquity *= DEG_RAD; - } - return eclipObliquity; - } - - - //------------------------------------------------------------------------- - // Private data - //------------------------------------------------------------------------- - - /** - * Current time in milliseconds since 1/1/1970 AD - * @see java.util.Date#getTime - */ - private long time; - - /* These aren't used yet, but they'll be needed for sunset calculations - * and equatorial to horizon coordinate conversions - */ - private double fLongitude = 0.0; - private double fLatitude = 0.0; - private long fGmtOffset = 0; - - // - // The following fields are used to cache calculated results for improved - // performance. These values all depend on the current time setting - // of this object, so the clearCache method is provided. - // - static final private double INVALID = Double.MIN_VALUE; - - private transient double julianDay = INVALID; - private transient double julianCentury = INVALID; - private transient double sunLongitude = INVALID; - private transient double meanAnomalySun = INVALID; - private transient double moonLongitude = INVALID; - private transient double moonEclipLong = INVALID; - //private transient double meanAnomalyMoon = INVALID; - private transient double eclipObliquity = INVALID; - private transient double siderealT0 = INVALID; - private transient double siderealTime = INVALID; - - private transient Equatorial moonPosition = null; - - private void clearCache() { - julianDay = INVALID; - julianCentury = INVALID; - sunLongitude = INVALID; - meanAnomalySun = INVALID; - moonLongitude = INVALID; - moonEclipLong = INVALID; - //meanAnomalyMoon = INVALID; - eclipObliquity = INVALID; - siderealTime = INVALID; - siderealT0 = INVALID; - moonPosition = null; - } - - //private static void out(String s) { - // System.out.println(s); - //} - - //private static String deg(double rad) { - // return Double.toString(rad * RAD_DEG); - //} - - //private static String hours(long ms) { - // return Double.toString((double)ms / HOUR_MS) + " hours"; - //} - - /** - * @internal - */ - public String local(long localMillis) { - return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString(); - } - - - /** - * Represents the position of an object in the sky relative to the ecliptic, - * the plane of the earth's orbit around the Sun. - * This is a spherical coordinate system in which the latitude - * specifies the position north or south of the plane of the ecliptic. - * The longitude specifies the position along the ecliptic plane - * relative to the "First Point of Aries", which is the Sun's position in the sky - * at the Vernal Equinox. - *

- * Note that Ecliptic objects are immutable and cannot be modified - * once they are constructed. This allows them to be passed and returned by - * value without worrying about whether other code will modify them. - * - * @see CalendarAstronomer.Equatorial - * @see CalendarAstronomer.Horizon - * @internal - */ - public static final class Ecliptic { - /** - * Constructs an Ecliptic coordinate object. - *

- * @param lat The ecliptic latitude, measured in radians. - * @param lon The ecliptic longitude, measured in radians. - * @internal - */ - public Ecliptic(double lat, double lon) { - latitude = lat; - longitude = lon; - } - - /** - * Return a string representation of this object - * @internal - */ - public String toString() { - return Double.toString(longitude*RAD_DEG) + "," + (latitude*RAD_DEG); - } - - /** - * The ecliptic latitude, in radians. This specifies an object's - * position north or south of the plane of the ecliptic, - * with positive angles representing north. - * @internal - */ - public final double latitude; - - /** - * The ecliptic longitude, in radians. - * This specifies an object's position along the ecliptic plane - * relative to the "First Point of Aries", which is the Sun's position - * in the sky at the Vernal Equinox, - * with positive angles representing east. - *

- * A bit of trivia: the first point of Aries is currently in the - * constellation Pisces, due to the precession of the earth's axis. - * @internal - */ - public final double longitude; - } - - /** - * Represents the position of an - * object in the sky relative to the plane of the earth's equator. - * The Right Ascension specifies the position east or west - * along the equator, relative to the sun's position at the vernal - * equinox. The Declination is the position north or south - * of the equatorial plane. - *

- * Note that Equatorial objects are immutable and cannot be modified - * once they are constructed. This allows them to be passed and returned by - * value without worrying about whether other code will modify them. - * - * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Horizon - * @internal - */ - public static final class Equatorial { - /** - * Constructs an Equatorial coordinate object. - *

- * @param asc The right ascension, measured in radians. - * @param dec The declination, measured in radians. - * @internal - */ - public Equatorial(double asc, double dec) { - ascension = asc; - declination = dec; - } - - /** - * Return a string representation of this object, with the - * angles measured in degrees. - * @internal - */ - public String toString() { - return Double.toString(ascension*RAD_DEG) + "," + (declination*RAD_DEG); - } - - /** - * Return a string representation of this object with the right ascension - * measured in hours, minutes, and seconds. - * @internal - */ - public String toHmsString() { - return radToHms(ascension) + "," + radToDms(declination); - } - - /** - * The right ascension, in radians. - * This is the position east or west along the equator - * relative to the sun's position at the vernal equinox, - * with positive angles representing East. - * @internal - */ - public final double ascension; - - /** - * The declination, in radians. - * This is the position north or south of the equatorial plane, - * with positive angles representing north. - * @internal - */ - public final double declination; - } - - /** - * Represents the position of an object in the sky relative to - * the local horizon. - * The Altitude represents the object's elevation above the horizon, - * with objects below the horizon having a negative altitude. - * The Azimuth is the geographic direction of the object from the - * observer's position, with 0 representing north. The azimuth increases - * clockwise from north. - *

- * Note that Horizon objects are immutable and cannot be modified - * once they are constructed. This allows them to be passed and returned by - * value without worrying about whether other code will modify them. - * - * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Equatorial - * @internal - */ - public static final class Horizon { - /** - * Constructs a Horizon coordinate object. - *

- * @param alt The altitude, measured in radians above the horizon. - * @param azim The azimuth, measured in radians clockwise from north. - * @internal - */ - public Horizon(double alt, double azim) { - altitude = alt; - azimuth = azim; - } - - /** - * Return a string representation of this object, with the - * angles measured in degrees. - * @internal - */ - public String toString() { - return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG); - } - - /** - * The object's altitude above the horizon, in radians. - * @internal - */ - public final double altitude; - - /** - * The object's direction, in radians clockwise from north. - * @internal - */ - public final double azimuth; - } - - static private String radToHms(double angle) { - int hrs = (int) (angle*RAD_HOUR); - int min = (int)((angle*RAD_HOUR - hrs) * 60); - int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); - - return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; - } - - static private String radToDms(double angle) { - int deg = (int) (angle*RAD_DEG); - int min = (int)((angle*RAD_DEG - deg) * 60); - int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); - - return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; - } -} diff --git a/src/main/java/HygStar.kt b/src/main/java/HygStar.kt deleted file mode 100644 index cc49cb8..0000000 --- a/src/main/java/HygStar.kt +++ /dev/null @@ -1 +0,0 @@ -data class HygStar(val ra: Double, val dec: Double, val mag: Double, val absmag: Double, val properName: String?, val colorIndex: String, val bayerFlamsteed: String, val constellationAbbreviation: String) \ No newline at end of file diff --git a/src/main/java/SvgCreator.kt b/src/main/java/SvgCreator.kt index a9a500d..4d99a88 100644 --- a/src/main/java/SvgCreator.kt +++ b/src/main/java/SvgCreator.kt @@ -1,265 +1,216 @@ -import com.opencsv.CSVReaderBuilder -import com.singulariti.os.ephemeris.StarPositionCalculator -import com.singulariti.os.ephemeris.domain.Observatory -import com.singulariti.os.ephemeris.domain.Place -import com.singulariti.os.ephemeris.domain.Pole -import com.singulariti.os.ephemeris.domain.Star -import com.singulariti.os.ephemeris.utils.StarCatalog +import model.HygParser import java.io.File -import java.io.FileReader import java.io.PrintWriter -import java.time.Duration -import java.time.Instant -import java.time.ZoneId -import java.time.ZonedDateTime -import java.util.* -import java.util.concurrent.TimeUnit -import java.util.stream.Stream -import javax.xml.datatype.DatatypeConstants.HOURS -import kotlin.math.absoluteValue - +import kotlin.math.* /** - * - - - -180 becomes 18000 -> add 2 digits of precision to everything + * This function parses the input file (input/hygdata_v3.csv) and outputs an SVG file containing all stars above the given observer. + * + * Based this code on explanation found at http://jknight8.tripod.com/CelestialToAzEl.html#the%20source%20code */ + fun main(args: Array) { - // set the place and time you want - val starPositionCalculator = StarPositionCalculator() + // example values + val JD = 2458397.0 + val LAT = 51.027930 + val LON = 3.753585 - val observatory = getObservatory() + // create the file + SvgCreator().createSVGFile(LAT, LON, JD) +} - // at least get this absolute magnitude (smaller is brighter) 6.5 = human vis - val apparentMagnitudeCutOff = 7 +/** + * This class is capable of taking the Hyg database and outputting an SVG files full of stars. + * + * @param apparentMagnitudeCutOff at least get this absolute magnitude (smaller is brighter, 6.5 = visible by humans) + * @param nameOffset how much the name of a star is shifted up/right with regards to the star itself + */ +class SvgCreator(val apparentMagnitudeCutOff: Double = 7.0, + val outputFile: File = File("output/stars.svg"), + val overwriteOutputFile: Boolean = true, + val nameOffset: Double = 0.5 +) { - // make the svg file - val block: (PrintWriter) -> Unit = { out -> + /** + * For the given observer's location (lat/lon), at the given time (jd), create a view of all stars overhead. + */ + fun createSVGFile(LAT: Double, LON: Double, JD: Double) { - out.println(""" + val D = JD - 2451545.0 + val GMSThours = 18.697374558 + 24.06570982441908 * D + val GMST = (GMSThours % 24) * 15 + val LMST = GMST + LON + + val colorIndices = listOf( + -0.33 to "O5", + -0.17 to "B5", + 0.15 to "A5", + 0.44 to "F5", + 0.68 to "G5", + 1.15 to "K5", + 1.64 to "M5" + ) + + // set up the print operation... + val block: (PrintWriter) -> Unit = { out -> + /** + * + .colorClassO5V { fill: #f0f8ff } + .colorClassB0V { fill: #f2f6ff } + .colorClassA0V { fill: #effbff } + .colorClassF0V { fill: #fffffb } + .colorClassG0V { fill: #ffffce } + .colorClassK0V { fill: #fff8a0 } + .colorClassM0V { fill: #fff8a0 } + .colorClassDefault { fill: white } + + + http://www.vendian.org/mncharity/dir3/starcolor/ + */ + + // this outputs some default styling... changes this if you want + out.println(""" """.trimIndent()) -// history.forEach { -// out.println("${it.key}, ${it.value}") -// } - // second attempt -// val calendarAstronomer = CalendarAstronomer(Date(Instant.parse("2018-10-05T10:15:30.00Z").toEpochMilli())) - val calendarAstronomer = CalendarAstronomer(51.02, 3.74) - val d = Date(Instant.parse("2018-10-05T10:15:30.00Z").toEpochMilli()) - calendarAstronomer.date = d - val colorIndices = HashSet() + // loop over stars + HygParser().parse() + .filter { star -> star.mag <= apparentMagnitudeCutOff } + .forEach { star -> + // take a right ascension in hours, convert to degrees + var RA = star.ra + RA = (RA % 24) * 15 - val casA = StarCatalog.byIdAndConstellation("a", "cas") + // DEC is in range of -90 to 90... convert to 0 to 360 + var DEC = star.dec + if (DEC < 0) + DEC += 360 - // read the hyg database... - HygParser() - .parse() - // filter stars visible to the naked eye - .filter { star -> - star.mag <= apparentMagnitudeCutOff - } - .forEach { star -> + // convert to azimuth / altitude, all in degrees + var HA = LMST - RA + if (HA < 0) + HA += 360 - colorIndices.add(star.colorIndex) - - val convertDegreesToHoursMinutesSeconds = convertDecimalHoursToHMS(star.ra) - val convertDegreesToHoursMinutesSeconds1 = convertDecimalHoursToHMS(star.dec) - - calendarAstronomer - - println("convertDegreesToHoursMinutesSeconds = ${convertDegreesToHoursMinutesSeconds} ${convertDegreesToHoursMinutesSeconds1}") - - val star1 = Star( - null, - null, - null, - convertDegreesToHoursMinutesSeconds, - convertDegreesToHoursMinutesSeconds1, - star.mag.toInt().toString(), - null, - null - ) - - // print the star - println("it = $star") - println(" > star1 = ${star1.ra} ${star1.de}") - - val position = starPositionCalculator.getPosition(star1, observatory) -// println("position = $position") - - // is the star inside the radius? -// getDistanceFromLatLonInKm(observatory.latitude, observatory.longitude, position.); - -// println("position.altitude = ${position.altitude}, ${position.azimuth} ${dmsToRad(position.altitude)}") - - - val altitude = dmsToRad(position.altitude) - - assert(altitude.absoluteValue <= 90) - - // only allow stars above the horizon - if (altitude >= 0) { - // alpha -> the angle on the circle, which would be the azimuth - val azimuth = dmsToRad(position.azimuth) - // r -> this represents the altitude, map it to 0-90 - // altitude 0 means the outside of the circle... r is 90 then - val r = 90 - altitude - // draw the star! figure out an x,y coordinate on a circle - var y = Math.sin(azimuth) * r - var x = Math.cos(azimuth) * r - - println("azimuth = ${azimuth} altitude = $altitude") - - // shift everything +90 -> make sure the center of the circle is at (90,90) - y += 90 - x += 90 - - // figure out the color - val colorClass = if (star.colorIndex.isNotEmpty()) { - star.colorIndex.toDouble().let { - when { - it <= -.33 -> "colorClassO5V" - it <= -.3 -> "colorClassB0V" - it <= -0.02 -> "colorClassA0V" - it <= 0.3 -> "colorClassF0V" - it <= 0.58 -> "colorClassG0V" - it <= 0.81 -> "colorClassK0V" - it <= 1.40 -> "colorClassM0V" - else -> "colorClassDefault" + val sinALT = (sinDeg(DEC) * sinDeg(LAT)) + (cosDeg(DEC) * cosDeg(LAT) * cosDeg(HA)) + val ALT = asinDeg(sinALT) + val cosA = (sinDeg(DEC) - sinDeg(ALT) * sinDeg(LAT)) / (cosDeg(ALT) * cosDeg(LAT)) + val A = acosDeg(cosA) + val AZ = + if (sinDeg(HA) < 0) { + A + } else { + 360 - A } - } + + if (ALT < 0) { + // do nothing... it's below to horizon } else { - "colorClassDefault" - } + // altitude 0 means the outside of the circle... r is 90 then + val r = 90 - ALT + // draw the star! figure out an x,y coordinate on a circle + var y = sinDeg(AZ) * r + var x = cosDeg(AZ) * r - // determine the size of the circle -> depending on the apparent magnitude - val circleR = ((star.mag - apparentMagnitudeCutOff) * -1) * 0.05 - // print it to svg - val random = Random() - out.println("""""") + // shift everything +90 -> make sure the center of the circle is at (90,90) + y += 90 + x += 90 - // print name? - if (star.properName?.isNotEmpty() == true) { - out.println("""${star.properName}""") - } + // figure out the closest color index that we know +// -0.33 O5 Blue +// -0.17 B5 Blue-white +// 0.15 A5 White with bluish tinge +// 0.44 F5 Yellow-White +// 0.68 G5 Yellow +// 1.15 K5 Orange +// 1.64 M5 Red - if (star.constellationAbbreviation?.isNotEmpty()) { - val col = when (star.constellationAbbreviation) { - "Dra" -> "red" - "UMa" -> "green" - "Her" -> "blue" - else -> "white" + // figure out the color + val colorClass = if (star.colorIndex.isNotEmpty()) { + + val theColor = colorIndices.map { color -> + color to abs(color.first - star.colorIndex.toDouble()) + }.sortedBy { + it.second + }.first().first.second + + "colorClass$theColor" + } else { + "colorClassDefault" } - out.println("""${star.constellationAbbreviation}""") + + // determine the size of the circle -> depending on the apparent magnitude + val circleR = ((star.mag - apparentMagnitudeCutOff) * -1) * 0.05 + + // print name? + if (star.properName?.isNotEmpty() == true) { +// out.println("""${star.properName}""") + // write the text to the top right of the star + out.println("""${star.properName}""") + } + + out.println("""""") + + // not really doing anything with this yet... printing the constellation name in a specific color if you want +// if (star.constellationAbbreviation?.isNotEmpty()) { +// val col = when (star.constellationAbbreviation) { +// "Dra" -> "red" +// "UMa" -> "green" +// "Her" -> "blue" +// else -> "white" +// } +// out.println("""${star.constellationAbbreviation}""") +// } } - } else { -// println("skipping star... $altitude") } - // filter the stars on altitude - } + out.println("") + } - val minRaa = HygParser().parse().mapToDouble { star -> star.ra }.min() - println("minRa = ${minRaa}") - val maxRaa = HygParser().parse().mapToDouble { star -> star.ra }.max() - println("maxRa = ${maxRaa}") - val minDec = HygParser().parse().mapToDouble { star -> star.dec }.min() - println("minDec = ${minDec}") - val maxDec = HygParser().parse().mapToDouble { star -> star.dec }.max() - println("maxDec = ${maxDec}") + // ... and actually do the print + if (overwriteOutputFile) { + outputFile.delete() + } + outputFile.printWriter().use(block) - out.println("") } - File("stars.svg").printWriter().use(block) - } /** - * Convert XX:XX to degrees. + * The non-radial version of sin. */ -fun dmsToRad(input: String): Double { - val resMod = if (input.startsWith("-")) -1 else 1 - val split = input.split(":") - var result = 0.0 - result += split[0].toDouble().absoluteValue - if (split.size > 1) - result += (split[1].toDouble() / 60) - return result * resMod +fun sinDeg(degrees: Double): Double { + return sin(Math.toRadians(degrees)) } /** - * Default position: gontrodestraat + * The non-radial version of cos. */ -fun getObservatory(name: String = "Default place name", latitude: Double = 51.027930, longitude: Double = 3.753585): Observatory { - val time = ZonedDateTime.of(2018, 10, 5, 19, 0, 0, 0, ZoneId.of("UTC")) //Date and time in UTC - val place = Place(name, latitude, Pole.NORTH, longitude, Pole.EAST, TimeZone.getTimeZone("Asia/Calcutta"), "", "") - return Observatory(place, time) +fun cosDeg(degrees: Double): Double { + return cos(Math.toRadians(degrees)) } /** - * Convert 21.9384 hours to X:Y:Z, X hours, Y minutes, Z seconds + * The non-radial version of asin. */ -fun convertDecimalHoursToHMS(degrees: Double): String { - // what's the sign? - val sign = if(degrees<0) "-" else "+" - val input = degrees.absoluteValue - val hours = Math.floor(input).toInt() - val minutesWithRest = (input - hours) * 60 - val minutes = Math.floor(minutesWithRest).toInt() - val seconds = ((minutesWithRest - minutes) * 60).toInt() - val result = "${sign}$hours:$minutes:$seconds" - return result +fun asinDeg(sin: Double): Double { + return Math.toDegrees(asin(sin)) } /** - * Convert 25.5 degrees to 25 degrees, 5 + * The non-radial version of acos. */ -fun convertDecimalDegreesToDMS(degrees: Double): String { - return convertDecimalHoursToHMS(degrees) -} - -fun testEphemeris() { - - - val starCalculator = StarPositionCalculator() - val casA = StarCatalog.byIdAndConstellation("a", "cas") -// val casAPosition = starCalculator.getPosition(casA, hassan) - -// println("casA = $casAPosition") -} - -fun getDistanceFromLatLonInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double { - var R = 6371; // Radius of the earth in km - var dLat = deg2rad(lat2 - lat1); // deg2rad below - var dLon = deg2rad(lon2 - lon1); - var a = - Math.sin(dLat / 2) * Math.sin(dLat / 2) + - Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * - Math.sin(dLon / 2) * Math.sin(dLon / 2) - ; - var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); - var d = R * c; // Distance in km - return d -} - -fun deg2rad(deg: Double): Double { - return deg * (Math.PI / 180) -} - -fun hoursToDms(hours: Double) { - +fun acosDeg(cos: Double): Double { + return Math.toDegrees(acos(cos)) } diff --git a/src/main/java/SvgCreator2.kt b/src/main/java/SvgCreator2.kt deleted file mode 100644 index ce49116..0000000 --- a/src/main/java/SvgCreator2.kt +++ /dev/null @@ -1,178 +0,0 @@ -import java.io.File -import java.io.PrintWriter -import kotlin.math.acos -import kotlin.math.asin -import kotlin.math.cos -import kotlin.math.sin - - -/** - * http://jknight8.tripod.com/CelestialToAzEl.html#the%20source%20code - */ -fun main(args: Array) { - // input - // julian day - val JD = 2458397 - val LAT = 51.027930 - val LON = 3.753585 - - // calculation - val D = JD - 2451545.0 - val GMSThours = 18.697374558 + 24.06570982441908 * D - val GMST = (GMSThours % 24) * 15 - val LMST = GMST + LON - - - // at least get this absolute magnitude (smaller is brighter) 6.5 = human vis - val apparentMagnitudeCutOff = 7 - - - val block: (PrintWriter) -> Unit = { out -> - /** - * - .colorClassO5V { fill: #f0f8ff } - .colorClassB0V { fill: #f2f6ff } - .colorClassA0V { fill: #effbff } - .colorClassF0V { fill: #fffffb } - .colorClassG0V { fill: #ffffce } - .colorClassK0V { fill: #fff8a0 } - .colorClassM0V { fill: #fff8a0 } - .colorClassDefault { fill: white } - - - http://www.vendian.org/mncharity/dir3/starcolor/ - */ - - out.println(""" - - """.trimIndent()) - - // loop over stars - HygParser().parse().forEach { star -> - var RA = star.ra - - // 26 % 24 = 2 - // 2 % 24 = 2 - // 27 % 24 = 3 - // 102 % 10 = 2 - - RA = (RA % 24) * 15 - - var DEC = star.dec - // DEC is in range of -90 to 90... convert to 0 to 360 - if (DEC < 0) - DEC += 360 - - - // convert to az / alt - var HA = LMST - RA - if (HA < 0) - HA += 360 - - val sinALT = (sinDeg(DEC) * sinDeg(LAT)) + (cosDeg(DEC) * cosDeg(LAT) * cosDeg(HA)) - val ALT = asinDeg(sinALT) - val cosA = (sinDeg(DEC) - sinDeg(ALT) * sinDeg(LAT)) / (cosDeg(ALT) * cosDeg(LAT)) - val A = acosDeg(cosA) - val AZ = - if (sinDeg(HA) < 0) { - A - } else { - 360 - A - } - - println("LAT = $LAT RA = $RA DEC = $DEC SINALT = $sinALT ALT = $ALT HA = $HA AZ = $AZ") - - if (ALT < 0) { - // do nothing... it's below to horizon - } else { - // altitude 0 means the outside of the circle... r is 90 then - val r = 90 - ALT - // draw the star! figure out an x,y coordinate on a circle - var y = sinDeg(AZ) * r - var x = cosDeg(AZ) * r - - - // shift everything +90 -> make sure the center of the circle is at (90,90) - y += 90 - x += 90 - - // figure out the color - val colorClass = if (star.colorIndex.isNotEmpty()) { - star.colorIndex.toDouble().let { - when { - it <= -.33 -> "colorClassO5V" - it <= -.3 -> "colorClassB0V" - it <= -0.02 -> "colorClassA0V" - it <= 0.3 -> "colorClassF0V" - it <= 0.58 -> "colorClassG0V" - it <= 0.81 -> "colorClassK0V" - it <= 1.40 -> "colorClassM0V" - else -> "colorClassDefault" - } - } - } else { - "colorClassDefault" - } - - // determine the size of the circle -> depending on the apparent magnitude - val circleR = ((star.mag - apparentMagnitudeCutOff) * -1) * 0.05 - - // print name? - val nameOffset = 0.5 - if (star.properName?.isNotEmpty() == true) { -// out.println("""${star.properName}""") - // write the text to the top right of the star - out.println("""${star.properName}""") - } - - println("circleR = ${circleR}") - - if(circleR>0) { - out.println("""""") - } - -// if (star.constellationAbbreviation?.isNotEmpty()) { -// val col = when (star.constellationAbbreviation) { -// "Dra" -> "red" -// "UMa" -> "green" -// "Her" -> "blue" -// else -> "white" -// } -// out.println("""${star.constellationAbbreviation}""") -// } - } - } - - out.println("") - } - - File("stars2.svg").printWriter().use(block) - -} - -fun sinDeg(degrees: Double): Double { - return sin(Math.toRadians(degrees)) -} - -fun cosDeg(degrees: Double): Double { - return cos(Math.toRadians(degrees)) -} - -fun asinDeg(sin: Double): Double { - return Math.toDegrees(asin(sin)) -} - -fun acosDeg(cos: Double): Double { - return Math.toDegrees(acos(cos)) -} diff --git a/src/main/java/TestHoekskes.kt b/src/main/java/TestHoekskes.kt deleted file mode 100644 index 313162d..0000000 --- a/src/main/java/TestHoekskes.kt +++ /dev/null @@ -1,7 +0,0 @@ -fun main(args: Array) { - val h = convertDecimalHoursToHMS(-24.0) - println("h = ${h}") - - val s = convertDecimalDegreesToDMS(-45.2) - println("s = ${s}") -} \ No newline at end of file diff --git a/src/main/java/HygParser.kt b/src/main/java/model/HygParser.kt similarity index 71% rename from src/main/java/HygParser.kt rename to src/main/java/model/HygParser.kt index b32563d..6bbbfc6 100644 --- a/src/main/java/HygParser.kt +++ b/src/main/java/model/HygParser.kt @@ -1,19 +1,29 @@ +package model + import com.opencsv.CSVReaderBuilder +import java.io.File import java.io.FileReader import java.util.stream.Stream class HygParser { /** - * Read the HYG database. + * Read the HYG database. (v3, */ fun parse(): Stream { + val s = "input/hygdata_v3.csv" + // check if the file exists + val file = File(s) + if(!file.exists()) { + throw Error("You have to download 'hygdata_v3.csv' from https://github.com/astronexus/HYG-Database and put it in the input folder in order to use the HygParser class.") + } + // get the csv reader - val csvReader = CSVReaderBuilder(FileReader("data/hygdata_v3.csv")) + val csvReader = CSVReaderBuilder(FileReader(file)) .withSkipLines(1) .build() // stream the lines - // indices that we're interested in + // indices that we're interested in (check the documentation on astronexus' github) val id = 0 val hip = 1 val hd = 2 @@ -51,8 +61,8 @@ class HygParser { val varrrr = 34 val var_min = 35 + // convert the relevant information into a HygStar object return csvReader.map { - // println("it = ${Arrays.toString(it)}") HygStar( ra = it[ra].toDouble(), dec = it[dec].toDouble(), diff --git a/src/main/java/model/HygStar.kt b/src/main/java/model/HygStar.kt new file mode 100644 index 0000000..0706c62 --- /dev/null +++ b/src/main/java/model/HygStar.kt @@ -0,0 +1,17 @@ +package model + +/** + * This class represents a single line in the Hyg database. + * + * @param colorIndex The star's color index (blue magnitude - visual magnitude), where known + */ +data class HygStar( + val ra: Double, + val dec: Double, + val mag: Double, + val absmag: Double, + val properName: String?, + val colorIndex: String, + val bayerFlamsteed: String, + val constellationAbbreviation: String +) \ No newline at end of file